Display Accessibility Tools

Accessibility Tools

Grayscale

Highlight Links

Change Contrast

Increase Text Size

Increase Letter Spacing

Readability Bar

Dyslexia Friendly Font

Increase Cursor Size

Response to environmental stresses

Environmental abiotic stresses, such as cold, drought, and high salinity, can greatly affect plant growth and development. Plant scientists have faced increasingly challenging climate changes to maintain and increase the food production in the world. Due to their sessile nature, plants have to develop special systems to respond and adapt to stresses and ultimately acquire stress tolerance for survival. Thus, understanding mechanisms for stress adaptation and tolerance is one of the most important and challenging goals in plant sciences and holds the key for future plant breeding. One of our main ongoing research projects is to identify plant “enhancers” that regulate expression of genes activated by abiotic stresses. Enhancers are cis-regulatory DNA elements that control the expression of genes during specific developmental stages or under various biotic and abiotic stresses. Enhancers can be identified based on their unique molecular signatures associated with open chromatin (2021, Plant Cell 33: 1997-2014). Identification and characterization of stress-responsive enhancers will be essential for us to understand plant stress biology, such enhancers will also become a key resource to improve the tissue specificity and transcription levels of transgenes for crop improvement.

 

A cold-inducible enhancer in Arabidopsis thaliana. The two transgenic plants carry the same T-DNA insertion composed of an enhancer fused to the GUS reporter gene. Left: GUS assay of a two-week-old seedling grown under room temperature. Right: GUS assay of a seedling placed under 4℃ for 24 hours prior to GUS staining. Note: GUS signals were mainly observed in roots and main veins before cold treatment. GUS signals can be observed in the entire seedling after cold stress.